测试文章

测试abcd


分割线


数学表达式

tan(x)\tan (x),可以用

tan(x)=sin(x)cos(x)\tan (x)=\frac{\sin (x)}{\cos (x)}

或者这个

tan(x)=x=1(1)n122n(22n1)B2nx2n1(2n)!\tan (x)=\sum _{x=1}^{\infty } \frac{(-1)^{n-1} 2^{2 n} \left(2^{2 n}-1\right) B_{2 n} x^{2 n-1}}{(2 n)!}

其中B2nB_{2 n}为伯努利数。B2nB_{2 n}1cos(x)\frac{1}{\cos (x)}都用多项式求逆来做。

24=0.52c+2d+24=a\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a


{abcd}\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}


(123x000y0).(123x000y0)2=(4x+3xy+14x+3y+26x+32x2+x2x+3xy3xxy2xy3xy) \begin{pmatrix} 1 & 2 &3 \\ x & 0 &0 \\ 0 & y &0 \end{pmatrix} . \begin{pmatrix} 1 & 2 &3 \\ x & 0 &0 \\ 0 & y &0 \end{pmatrix}^2= \begin{pmatrix} 4x+3xy+1 & 4x+3y+2 &6x+3 \\ 2x^2+x & 2x+3xy &3x \\ xy & 2xy &3xy \end{pmatrix}


AaBbcC=D\begin{CD} A @>a>> B \\ @VbVV @AAcA \\ C @= D \end{CD}


limx0sinxxx3=16\lim\limits_{x\rightarrow 0}\frac{\sin x -x}{x^3}=-\frac{1}{6}


Edxdydz\iiint\limits_E dx\,dy\,dz

(x,y)Cx3dx+4y2dy\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy

(x,y)Cx3dx+4y2dy\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy


${}$$${}$$的区别

${}$
12f(x)dx\int_{-1}^{2}f(x)dx

$${}$$

12f(x)dx\int_{-1}^{2}f(x)dx


代码测试

print()函数

1
print 'Hellow world!'

使用 Ctrl+Alt+Del 重启电脑


代码块

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from time import process_time
def gaussian_prime_count(n):
"""Prepare a lookup table to allow us to call P[x] to find number of gaussian primes <=x
For any x that can be reached as n//i for integer i (returned in reverse order as V)"""
r = int(n**0.5)
ps = prime_sieve(r+1)
assert r*r <= n and (r+1)**2 > n
V = [n//i for i in range(1,r+1)]
V += list(range(V[-1]-1,0,-1)) # V is interesting positions in descending order
S1 = {i:(i-1)//4 for i in V} # Count of integers up to 2..i of form 4k+1 after sieving primes up to p
S2 = {i:max(0,(i+1)//4) for i in V} # Count of integers up to 2..i of form 4k+3 after sieving primes up to p
for i,p in enumerate(ps[1:]): # Skip 2
p2 = p*p
if p%4==1:
sp1 = S1[p-1] # count of primes smaller than p
sp2 = S2[p-1]
for v in V:
if v < p2: break
S1[v] -= S1[v//p] - sp1
S2[v] -= S2[v//p] - sp2
else:
sp1 = S1[p-1] # count of primes smaller than p
sp2 = S2[p-1]
for v in V:
if v < p2: break
S1[v] -= S2[v//p] - sp2
S2[v] -= S1[v//p] - sp1
return S1[n],S2[n]

def prime_sieve(n):
sieve = [True] * (n//2)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]

def ss(n):
return gaussian_prime_count(n)

s=process_time()
a=ss(17179869184)
b=ss(8589934592)
print('4k+1:',a[0]-b[0])
print('4k+3:',a[1]-b[1])
print(process_time()-s,'secs')


图片测试

风景


其他

This is Tab 1.

This is Tab 2.

This is Tab 3.

列表

dasd sdasda sdad
1 2 3
4 5 5
6 7 8

臣亮言:先帝 创业未半,而中道崩殂 。今天下三分,益州疲敝 ,此诚危急存亡之秋 也!然侍衞之臣,不懈于内;忠志之士 ,忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气;不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中、府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科 ,及为忠善者,宜付有司,论其刑赏,以昭陛下平明之治;不宜偏私,使内外异法也。